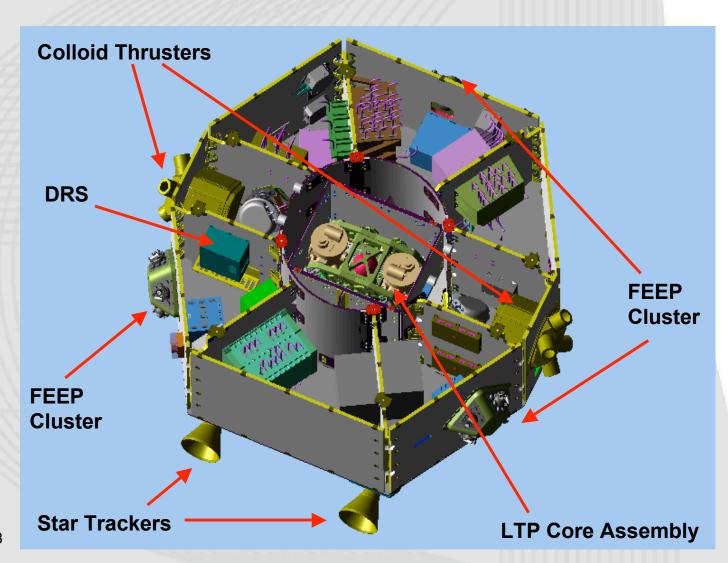


Managing Disturbances Sources on LISA Pathfinder

Carl Warren, EADS Astrium



Contents

- Introduction
- Self-Gravity Disturbances
- Magnetic Disturbances
- Thermal Effects
- Conclusions

LISA Pathfinder Configuration

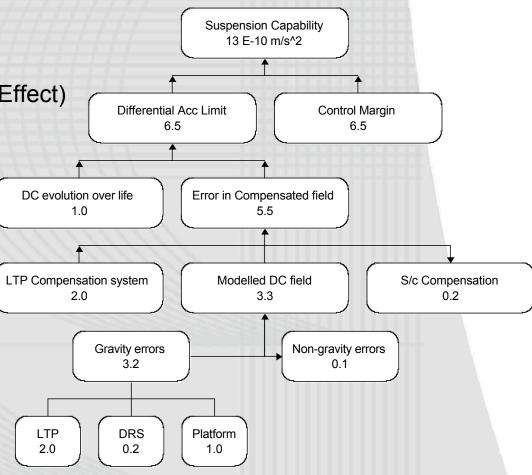
Primary Mission Goal

- Acceleration Noise
- "Verify that a TM can be put in pure gravitational free-fall within one order of magnitude of the requirement for LISA"

$$S_a^{\frac{1}{2}}(f) \le 3x10^{-14} \left[1 + \left(\frac{f}{3mHz} \right)^2 \right] \frac{m}{s^2} \frac{1}{\sqrt{Hz}}$$

 $1mHz \le f \le 30mHz$

- Apportioned between known or potential disturbance sources and between contributors
 - Direct force noise caused by low frequency, timevarying forces
 - TM jitter which couples via a stiffness term
 - Optical Metrology System accuracy and alignment


Self-Gravity Disturbance Sources

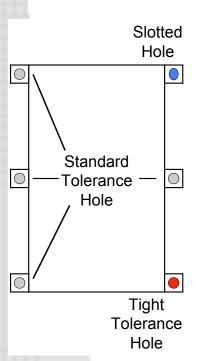
- Self-gravity noise effects
 - Primarily due to thermo-elastic effects
- Actuation noise budget is 10x10⁻¹⁵ m/s²/√Hz
 - Electrostatic suspension system compensates for differential force between TM1 and TM2
 - Necessary to limit differential force and voltage fluctuations
 - 50% of budget allocated to DC force/voltage stability
- Gravity gradient stiffness effect
- Cross-coupling of forces/torques from other axes into sensitive axis

Differential DC Force

- Number of contributors to differential DC force
 - Magnetic Field
 - Electric Field
 - Thermal Effects
 - Self-Gravity (Dominant Effect)
- Natural field exceeds suspension capability
 - Balancing mandatory

Modelling Approach

Gravity force between source element and TMs


$$\vec{F} = \int \left(\int \vec{\nabla} \left(\frac{G\rho_{TM} \rho_{source}}{\sqrt{(x-X)^2 + (y-Y)^2 + (z-Z)^2}} \right) dV_{TMe} \right) dV_{source}$$

- Two source mass modelling approaches used
 - Homogenous Source Mass
 - Integrate over test mass volume and source mass volume
 - Basic shapes Cuboid, Cylinder, Sphere
 - Point Mass Distribution
 - Integrate over test mass volume for series of point masses
- Model output at TM1 and TM2 locations
 - Force, Torques, Force Gradients (dF/dx, dF/d_), Torque Gradients (dT/dx, dT/d_)

Minimising Equipment Location Uncertainty

- CFRP Structure minimises structure distortion
 - e.g. 0g-1g transition, outgassing and moisture loss
- Panel displacement and rotation limited
 - Displacement < 0.25 mm
 - Rotation < 0.001 radians
- All panel insert locations mapped (< 0.02 mm)
- Equipment thermo-elastic expansion
 - Tight tolerance hole and slotted hole specified
 - Controls direction of expansion
 - Limits uncertainty of unit location
 - Large unit expansion causes 10⁻¹² m/s² change

Balancing the Gravity Field

- Compensation mass minimised when close to TMs
 - Three levels of compensation masses
 - LTP Internal (mounting inside vacuum housing)
 - LTP External (mounted on vacuum housing)
 - Spacecraft Level (mounted on central cylinder)
- Spacecraft Level Compensation Masses
 - Series of fixed locations defined
 - Sets of different sized CMs available
 - Search algorithm finds sets of CMs to provide correction
 - Analysis shows that ~1x10⁻⁹ m/s² differential DC force correction can be achieved

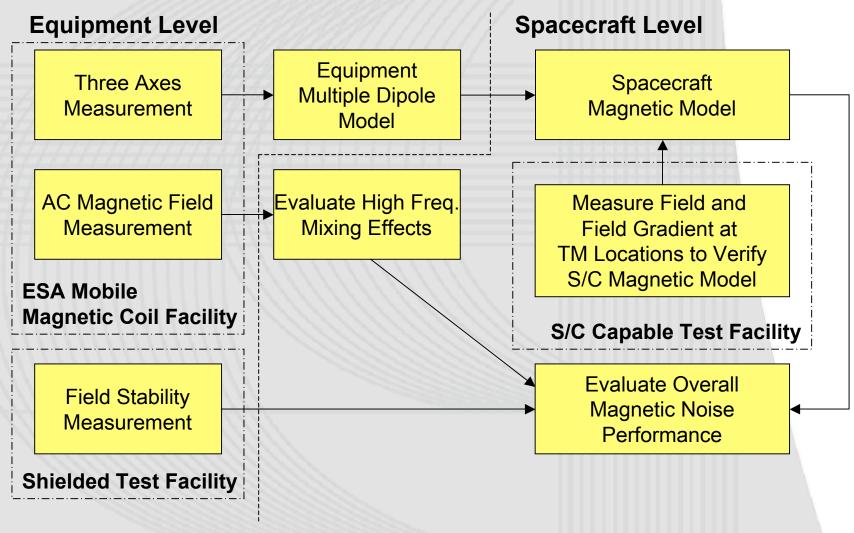
Magnetic Field Disturbance Sources

- Budget allocation of 12x10⁻¹⁵ m/s²/√Hz
- Disturbances generated by field and field gradient due to S/C sources and interaction with interplanetary field
 - Interaction of field gradient fluctuations within the MBW with permanent and induced DC magnetisation
 - Interaction of fluctuating part of induced magnetisation within the MBW with DC field gradient
 - Mixing of high frequency magnetic field fluctuations above MBW, resulting in low frequency modulation
 - Fluctuating moment in TM due to interaction with interplanetary field, interacting with DC field gradient
- S/C Requirements: Field: 5000 nT; Gradient: 2830 nT/m

Equipment Level Magnetic Field Requirements

 Equipment level magnetic moment requirement set using historical data, complexity and proximity to TMs

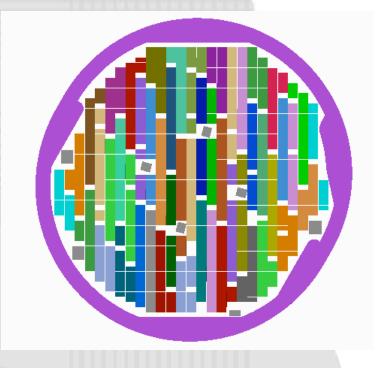
Page 11 Friday, 23 June 2006



Design Approach to Control Magnetic Disturbances

- Most effective method to control by design:
 - Avoid permanent magnets, assemblies that intentionally generate magnetic fields (relays, solenoids, etc.)
 - Appropriate selection of materials no ferromagnetic parts
 - Minimise current levels as far as practical
 - Minimise loop area on circuit boards and harness by keeping return lines in close proximity to out-going lines
 - Avoid unintended current loops single-point grounding, careful design of power distribution systems

Magnetic Testing

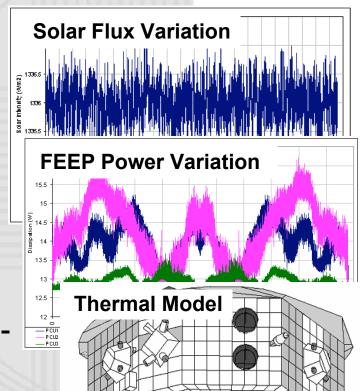

Page 13

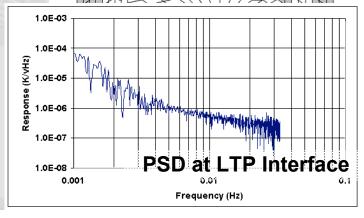
Friday, 23 June 2006

Solar Array Design

- Solar array is physically large and close to TMs
 - Not possible to use overall magnetic moment in model
 - Measurement of magnetic dipole not practical
 - Magnetic properties are entirely calculated
- Array design will be optimised to minimise magnetic field and field gradient

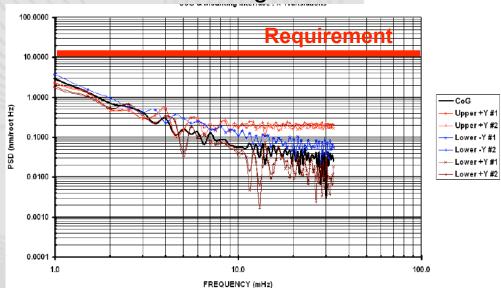
EADS ASTRIUM


Thermal Effects


- Temperature fluctuations between S/C and LTP
 - Thermal distortion of housing and optical bench
 - Effects induced by thermal gradient across sensor housing
 - Temperature stability requirement 10⁻³ K/√Hz
- Self-gravity noise cause by thermo-elastic effects
 - Rigid-body motion of the LTP due to thermo-elastic distortions at the S/C-LTP interface
 - Causes gravity field at TMs to vary generating an acceleration noise
 - Acceleration noise requirement 2.12x10⁻¹⁵ m/s²/√Hz
 - Translational distortion requirement 10 nm/√Hz

Thermal Stability

- Variation in solar flux generates noise
 - Heat fluctuations on array transmitted through structure to payload interface
 - Via DFACS which controls the attitude, causing power dissipation variations in micro-propulsion elements
- S/C thermal capacity acts as a lowpass filter
 - High frequency sources damped by S/C resistance to temperature change

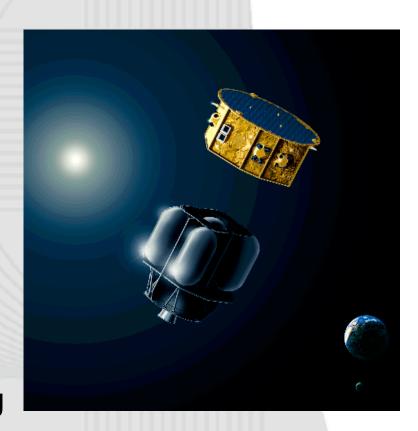

Thermo-Elastic Distortion Analysis

- Input Thermal stability analysis time histories
 - Temperature distribution mapped to FE mesh of SCM structure model
 - Thermal distortion analysis— generation of distortion time histories at LCA geometric centre and S/C LCA interface

PSD calculated by applying Fourier transforms to grid

time histories

 A structure level thermal distortion test will be used to correlate the thermoelastic model


Conclusions

- The impact of spacecraft level disturbances is controlled on LPF by a combination of:
 - Setting of appropriate requirements to limit or eliminate effects
 - Modelling of the disturbances
 - Testing to verify models, where feasible

Introduction to LISA Pathfinder (LPF)

- LPF a technology demonstration mission
 - LISA Test Package (LTP)
 - Drag Free Attitude Control System (DFACS)
 - Micro-Propulsion Technologies
- Launch to low Earth orbit in late-2009
- Transfer to L1 using chemical propulsion stage
- L1 provides a benign operating environment

